iCANX Talks Vol.138 | 青年科學家獎專題分享會

2023-04-07 10:59:56

直播時間:2023年4月7日(周五)20:00-21:30


【資料圖】

直播平臺:

科學網(wǎng)APP

https://weibo.com/l/wblive/p/show/1022:2321324887821641974383(直播間鏈接)

科學網(wǎng)微博

科學網(wǎng)視頻

北京時間2023年號4月7日晚八點,iCANX Talks 第138期將在iCANX平臺上線!本期我們邀請到西安電子科技大學 Rusen Yang 教授、加拿大女王大學 Bhavin J. Shastri 教授兩位嘉賓進行分享!更多精彩,敬請期待!

【直播介紹】

Rusen Yang

Xidian University

F Biomimetic peptide self-assembly for functional materials and novel applications

【Abstract】

Supramolecular assembly of metabolites produces novel materials with hierarchical structures, good biological properties, and unique physical properties. They are an essential biomimetic material, and self-assembly structures with excellent piezoelectric properties enable the study of the electromechanical coupling properties in biomaterials.

具有多層次有序結(jié)構、良好生物學特性和獨特物理性質(zhì)的代謝物自組裝材料是一種重要的仿生材料,具有優(yōu)異壓電性質(zhì)的自組裝材料也為研究生物材料的機電特性提供了一種可能。

However, the randomly oriented piezoelectric domains adversely affect the performance of piezoelectric biomaterials, and uniform polarization is needed for the material to show a macroscopic piezoelectric effect and to improve the performance of a piezoelectric device. We combine theoretical calculations and experimental studies to synthesize piezoelectric biomaterials based on amino acid and peptide self-assembly.

隨機取向的電疇無法極化嚴重影響了壓電生物材料的性能,而壓電材料需要有取向一致的電疇才具有優(yōu)異的宏觀壓電性能并制備器件。我們結(jié)合理論計算和實驗研究基于氨基酸和肽自組裝合成許多壓電生物材料。

We applied an electric field during the growth process to synthesize micron column arrays with controlled spontaneous polarization directions. We then studied the influence of the electric field on self-assembly. Our calculations showed that peptide-based piezoelectric materials outperform traditional piezoelectric ceramics in energy harvesting applications. We developed metabolite-based piezoelectric nanogenerators, composite nanogenerators, and flexible nanogenerators.

我們在生長過程中施加電場合成出自發(fā)極化方向和施加的電場方向一致的微米柱陣列,并進而研究了電場對自組裝的影響規(guī)律。理論計算表明肽基壓電材料比傳統(tǒng)的壓電陶瓷機電轉(zhuǎn)換性能更優(yōu),于是我們研制了壓電式納米發(fā)電機、復合納米發(fā)電機和柔性納米發(fā)電機,并且揭示了肽基納米發(fā)電機在不同溶液中的降解行為。

We also revealed the degradation behavior of peptide-based nanogenerators in different solutions. The research of peptide self-assembly materials has strongly promoted the discovery of environmentally friendly biomimetic functional materials and the advancement of new energy, advanced sensing, and other technologies, improving and enhancing peoples health and quality of life.

肽自組裝材料的研究有力推動環(huán)境友好仿生功能材料的發(fā)現(xiàn)和新能源、先進傳感等技術的進步,從而改善和提高人們的健康和生活質(zhì)量。

【BIOGRAPHY】

Dr. Rusen Yang is a Hua Shan professor and vice dean of the School of Advanced Materials and Nanotechnology at Xidian University in China. He obtained his M.S. and B.S. in Condensed Matter Physics from Jilin University, China. In 2007, he received his Ph.D. degree in Materials Science and Engineering from Georgia Institute of Technology, where he continued as a Post-Doctoral Associate till 2010.

楊如森,“華山學者”特聘教授,西安電子科技大學先進材料與納米科技學院副院長。他在吉林大學獲得凝聚態(tài)物理學碩士和學士學位,2007年在美國佐治亞理工學院獲博士學位,并繼續(xù)從事博士后研究3年。

From 2010 to 2018, he worked as an assistant professor in the Department of Mechanical Engineering at the University of Minnesota, where he was elected as a McKnight Land Grant Professor in 2013. He has focused his research on synthesizing new nanomaterials and exploring their application for energy harvesting and sensing applications. He has developed new processes to achieve nanowires with controlled orientation and post-growth approaches to align nanostructures.

2010年起他在明尼蘇達大學機械工程系擔任助理教授,并于2013年獲得麥克奈特土地授予教授稱號。他長期從事新型納米材料合成及其能量收集和先進傳感應用,開發(fā)了新工藝來實現(xiàn)具有受控取向的納米線和生長后方法來排列納米結(jié)構。

He has created piezoelectric biomaterials with controlled polarization and applied them for energy harvesting. He has published over 150 papers in peer-reviewed journals that have been cited over 12,000 times, and his transformative work won him NSF Career Award, 3M NTFA Award, and Nano Energy Award. His currently a Fellow of the Royal Society of Chemistry (FRSC) and a Deputy Editor of Research.

用平置納米線開辟了納米發(fā)電機的一個新方向,首次制備極性可控肽自組裝壓電生物材料,率先制備肽基能量收集器件,開發(fā)出比傳統(tǒng)傳感器敏感近百倍的高性能傳感器,在Science, Nature Nanotechnology等國際期刊報道發(fā)表150多篇論文,這些工作已經(jīng)被引用12,000多次。他的研究獲得了許多獎項的認可,包括美國3M公司青年教授獎,美國國家科學基金會NSF CAREER Award和納米能源領域有聲望的“Nano Energy Award”。他目前是英國皇家化學會會士,Science首個合作期刊Research的Deputy Editor.

Bhavin J. Shastri

Queen’s University

Neuromorphic Silicon Photonics and Applications from Classical to Quantum

【Abstract】

Artificial intelligence (AI) powered by neural networks has enabled applications in many fields (medicine, finance, autonomous vehicles). Digital implementations of neural networks are limited in speed and energy efficiency. Neuromorphic photonics aims to build processors that use light and photonic device physics to mimic neurons and synapses in the brain for distributed and parallel processing while offering sub-nanosecond latencies and extending the domain of AI and neuromorphic computing applications.

由神經(jīng)網(wǎng)絡驅(qū)動的人工智能(AI)已經(jīng)在許多領域(醫(yī)療、金融、自動駕駛汽車)獲得了應用。神經(jīng)網(wǎng)絡的數(shù)字實現(xiàn)在速度和能源效率方面受到了限制。神經(jīng)形態(tài)光子學旨在構建利用光和光子器件物理模擬大腦中的神經(jīng)元和突觸進行分布式和并行處理的處理器,同時提供亞納秒的延遲,并擴展人工智能和神經(jīng)形態(tài)計算應用的領域。

We will discuss photonic neural networks enabled by CMOS-compatible silicon photonics. We will highlight applications that require low latency and high bandwidth, including wideband radio-frequency signal processing, fiber-optic communications, and nonlinear programming (solving optimization problems). We will briefly introduce a quantum photonic neural network that can learn to act as near-perfect components of quantum technologies and discuss the role of weak nonlinearities.

我們將討論由CMOS兼容硅光子賦能的光子神經(jīng)網(wǎng)絡。我們將重點介紹需要低延遲和高帶寬的應用程序,包括寬帶射頻信號處理、光纖通信和非線性規(guī)劃(解決優(yōu)化問題)。我們將簡要介紹一個量子光子神經(jīng)網(wǎng)絡,它可以學習成為量子技術的近乎完美的成分,并討論弱非線性的作用。

【BIOGRAPHY】

Prof. Bhavin J. Shastri is an Assistant Professor of Engineering Physics at Queen’s University and a Faculty Affiliate at the Vector Institute. He was a Banting Postdoctoral Fellow at Princeton University. He received a Ph.D. in electrical engineering (photonics) from McGill University in 2012. Dr. Shastri is the recipient of the 2022 SPIE Early Career Achievement Award and the 2020 IUPAP Young Scientist Prize in Optics "for his pioneering contributions to neuromorphic photonics" from the ICO.

Bhavin J.Shastri是女王大學工程物理助理教授,也是矢量研究所的附屬教授。他是普林斯頓大學的班廷博士后研究員。2012年,他獲得了麥吉爾大學的電氣工程(光子學)博士學位。“因為他對神經(jīng)形態(tài)光子學的開創(chuàng)性貢獻”,他是2022年SPIE早期職業(yè)成就獎和2020年IUPAP青年科學家光學獎的獲得者。

He is a co-author of the book Neuromorphic Photonics, a term he helped coin. He has published more than 90 journal articles and 110 conference proceedings, 7 book chapters, and given over 90 invited talks, including 5 keynotes and 5 tutorials. Dr. Shastri is a Senior Member of Optica and IEEE.

他是《神經(jīng)形態(tài)光子學》(Neuromorphic Photonics)一書的合著者,這是他幫助創(chuàng)造的一個術語。他發(fā)表了90多篇期刊文章和110篇會議記錄、7個圖書章節(jié),并發(fā)表了90多次受邀演講,其中包括5篇主題演講和5篇教程。它是Optica和IEEE的高級成員。

【嘉賓介紹】

標簽:

關閉
新聞速遞